Skip to main content

Partial Vertex Cover on Graphs of Bounded Degeneracy

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2022)

Abstract

In the Partial Vertex Cover (PVC) problem, we are given an n-vertex graph G and a positive integer k, and the objective is to find a vertex subset S of size k maximizing the number of edges with at least one end-point in S. This problem is W[1]-hard on general graphs, but admits a parameterized subexponential time algorithm with running time \(2^{O(\sqrt{k})}n^{O(1)}\) on planar and apex-minor free graphs [Fomin et al. (FSTTCS 2009, IPL 2011)], and a \(k^{O(k)}n^{O(1)}\) time algorithm on bounded degeneracy graphs [Amini et al. (FSTTCS 2009, JCSS 2011)]. Graphs of bounded degeneracy contain many sparse graph classes like planar graphs, H-minor free graphs, and bounded tree-width graphs (see Fig. 1). In this work, we prove the following results:

  • There are algorithms for PVC on graphs of degeneracy d with running time \(2^{O(dk)}n^{O(1)}\) and \(\left( e+ed\right) ^k 2^{o(k)} n^{O(1)}\) which are improvements on the previous \(k^{O(k)}n^{O(1)}\) time algorithm by Amini et al. [2]

  • PVC admits a polynomial compression on graphs of bounded degeneracy, resolving an open problem posed by Amini et al. [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For basic definitions related to parameterized algorithms and complexity we refer to Sect. 2.1.

References

  1. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54, 544–556 (2008). https://doi.org/10.1007/s00453-008-9204-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial cover problems. J. Comput. Syst. Sci. 77(6), 1159–1171 (2011). https://doi.org/10.1016/j.jcss.2010.12.002. https://www.sciencedirect.com/science/article/pii/S0022000010001431

  3. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. J. ACM 63(5), 44:1–44:69 (2016). https://doi.org/10.1145/2973749.

  4. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  5. Fomin, F., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. Inf. Process. Lett. 111, 814–818 (2011). https://doi.org/10.1016/j.ipl.2011.05.016

    Article  MathSciNet  MATH  Google Scholar 

  6. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 1–60 (2016). https://doi.org/10.1145/2886094

    Article  MathSciNet  MATH  Google Scholar 

  7. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 503–510 (2010). https://doi.org/10.1137/1.9781611973075.43

  8. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781107415157

    Book  MATH  Google Scholar 

  9. Golovach, P.A., Villanger, Y.: Parameterized complexity for domination problems on degenerate graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 195–205. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92248-3_18

    Chapter  Google Scholar 

  10. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory Comput. Syst. 41, 501–520 (2007). https://doi.org/10.1007/s00224-007-1309-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92248-3_22

    Chapter  Google Scholar 

  12. Koana, T., Komusiewicz, C., Nichterlein, A., Sommer, F.: Covering many (or few) edges with k vertices in sparse graphs. In: Berenbrink, P., Monmege, B. (eds.) 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022. LIPIcs, Marseille, France, 15–18 March 2022 (Virtual Conference), vol. 219, pp. 42:1–42:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.STACS.2022.42

  13. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. CoRR abs/1604.04111 (2016). http://arxiv.org/abs/1604.04111

  14. Manurangsi, P.: A note on max k-vertex cover: faster FPT-AS, smaller approximate kernel and improved approximation. In: SOSA (2019)

    Google Scholar 

  15. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51, 60–78 (2008). https://doi.org/10.1093/comjnl/bxm048

    Article  Google Scholar 

  16. Moser, H., Niedermeier, R., Guo, J.: Exact algorithms for generalizations of vertex cover (2005)

    Google Scholar 

  17. Naor, M., Schulman, L., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 182–191 (1995). https://doi.org/10.1109/SFCS.1995.492475

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannane Yaghoubizade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panolan, F., Yaghoubizade, H. (2022). Partial Vertex Cover on Graphs of Bounded Degeneracy. In: Kulikov, A.S., Raskhodnikova, S. (eds) Computer Science – Theory and Applications. CSR 2022. Lecture Notes in Computer Science, vol 13296. Springer, Cham. https://doi.org/10.1007/978-3-031-09574-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09574-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09573-3

  • Online ISBN: 978-3-031-09574-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics